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ABSTRACT
Concerns about representation in computing within the U.S. have
driven numerous activities to broaden participation. Assessment of
the impact of these efforts and, indeed, a clear assessment of the ac-
tual “problem” being addressed are limited by the nature of the most
common data analysis which looks at the representation of each
population as a percentage of the number of students graduating
with a degree in computing. This use of a single metric cannot ade-
quately assess the impact of broadening participation efforts. First,
this approach fails to account for changing demographics of the
undergraduate population in terms of overall numbers and relative
proportion of the Federally designated gender, race, and ethnicity
groupings. A second issue is that the majority of literature on broad-
ening participation in computing (BPC) reports data on gender or
on race/ethnicity, omitting data on students’ intersectional identi-
ties. This leads to an incorrect understanding of both the data and
the challenges we face as a field. In this paper we present several
different approaches to tracking the impact of BPC efforts. We make
three recommendations: 1) cohort-based analysis should be used to
accurately show student engagement in computing; 2) the field as
a whole needs to adopt the norm of always reporting intersectional
data; 3) university demographic context matters when looking at
how well a CS department is doing to broaden participation in com-
puting, including longitudinal analysis of university demographic
shifts that impact the local demographics of computing.
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1 INTRODUCTION
Concerns about representation in computing within the U.S. have
driven numerous activities to broaden participation. Assessment
of the impact of these efforts and, indeed, a clear assessment of
the actual “problem” being addressed are limited by the nature
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of the most common data analysis which looks at the representa-
tion of each population as a percentage of the number of students
graduating with a degree in computing. In this paper we call this
method the standard analysis (see Figure 1 for an example of the
standard analysis). As pointed out by Barr [1], the standard analysis
of Computer Science (CS) degree data does not take into account
the changing demographics of the undergraduate population in
terms of overall numbers and relative proportion of the Federally
designated gender, race, and ethnicity groupings.1 While it does
give an indication of a student’s experience walking into a class-
room, and is somewhat reflective of overall current demographics
and historic marginalization, a new framework is necessary to eval-
uate longitudinal change for each demographic group. A second
issue we observe is that the majority of literature on broadening
participation in computing (BPC) reports data on gender or on
race/ethnicity, omitting data on students’ intersectional identities.
This leads to an incorrect understanding of both the data and the
challenges we face as a field by using a single-axis of analysis [4]
at a time (gender or race/ethnicity). When used as a framework,
intersectional analysis, a term coined by Crenshaw [4], allows us to
expose the multidimentionality of experiences that Black Women,
in Crenshaw’s work for example, experience in everyday life. In
computing, a number of researchers [11, 13–16, 18] have been ex-
ploring intersectionality as a framework of analysis for exploring
broadening participation in computing.

We argue that, in order to truly assess the effectiveness of cur-
ricular, pedagogic, and institutional interventions, we should use
multiple data analysis methods, each of which presents a different
perspective on the situation and the improvements achieved. These
different analyses allow us to distinguish between the experience
a student may have walking into a CS classroom at a particular
institution relative to their experience walking into a non-CS class-
room, the extent to which the CS department at institution X is
representative of the demographics of students across all disciplines
at X, and the extent to which CS as a field is attracting and retaining
students of different identities.

In this paper, we discuss the challenges of using the standard
analysis to understand representation and, in particular, to under-
stand longitudinal data. We present a series of visualizations that
analyze intersectional representation in computing in the context
of university demographics across all degrees. We then turn to
examine how well the information-based metrics of diversity used
in many other disciplines can serve to analyze demographic diver-
sity in computing. We conclude with a strong recommendation

1We examine visualizations using race/ethnicity and gender in this paper but note that
there are other categories of diversity.
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Figure 1: Percentage of total CS degrees earned by women,
as an example of the standard analysis

.

that the BPC community rethink how to represent demographic
graduation data in computing and we discuss the limitations of
using graduation data for assessing the impact of BPC activities.
Indeed, graduation data ignores issues of retention, persistence,
belonging, and the institutional changes needed to attract students
to computing independent of prior computing experience in high
school.

2 COHORT ANALYSIS OF LONGITUDINAL
DEGREE DATA

Discussion of diversity in computing typically looks at the degrees
earned by subgroups as a percentage of the whole. For example,
women’s participation in computing is typically based on exam-
ination of the percentage of total CS degrees that are earned by
women each year, as shown in Figure 1.2 The data in this graph are
from the Integrated Postsecondary Education Data System (IPEDS)
Completions data set.3 IPEDS data is divided by Classification of
Instructional Programs (CIP) codes. Computer Science data can be
found in Federal CIP code 11. However, for some universities CIP-11
includes Information Technology (IT) and other similarly named
programs, so care must be taken in analyzing results because IT
degrees are often more diverse than are CS degrees.

As we discuss in detail below, the standard analysis (see Figure 1)
does not support an accurate analysis of longitudinal trends. It does,
however, provide a realistic picture of the experience an individual
student has as they go through their CS studies. For example, in
2020, 21% of CS degrees were awarded to women, which means that
a woman CS major walking into a CS classroom of 100 CS seniors
would on average see 20 other women (in addition to themself).
Similarly, the standard analysis of CS degrees as reported in IPEDS

2Note that all data presented in this paper are based on U.S. institutions.
3https://ncsesdata.nsf.gov/home

Figure 2: Distribution of CS degrees across IPEDS race and
ethnicity categories.

by race and ethnicity categories, shown in Figure 2, illustrates that,
in 2020, a Black CS major in a class of 100 students would see 8
other Black students, 57 white students etc.

The standard analysis is otherwise problematic, particularly for
longitudinal analysis of change over time. It does not, for example,
account for significant demographic changes that have taken place
in the college-going population over time. In 1966 (leftmost data
point in Figure 1), women made up 42% of the U.S. undergraduate
population, but by 2020, (rightmost data point in the figure) women
made up 57% of the U.S. undergraduate population. Thus, although
Figure 1 gives us men and women’s participation relative to each
other, it does not show shifts in interest by either group over time.
That is to say, what looks like a sudden drop in women’s degrees in
the 1980’s might actually be a sudden increase in interest by men
while women’s interest stayed steady. The relative nature of the
data presentation obscures the actual interest in CS indicated by
the data.

We see this phenomenon clearly when we use the standard
analysis to compare women’s CS degrees to women’s Math degrees.
Figure 3 shows the percentage of CS degrees and the percentage
of Math degrees that were earned by women during 1966-2020.
From this graph we might conclude that women study math at
a significantly higher rate than they study CS because they earn
a much higher percentage of math degrees than they do of CS
degrees. Yet this view of the data completely hides the extent to
which students do or do not study each field, making a relative
comparison inappropriate and erroneous. Figure 4 changes the
computation, showing women’s CS degrees and women’s Math
degrees, each as a percentage of women’s degrees across all fields.
Figure 4 is an accurate representation of the extent to which each
field attracts women, independent of how many men study the
field. The story told by Figure 4 is quite different than that told by
Figure 3: Figure 4 shows that women’s pursuit of Math degrees fell
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Figure 3: Women’s CS and Math degrees as percentage of
discipline degrees.

Figure 4: Women’s CS and Math degrees as percentage of
women’s degrees.

off by 1980 and is currently below women’s pursuit of CS degrees.
Figure 3 cannot correctly show this reality because it is distorted
by the fact that men study Math at a much lower rate than they
study CS, making women’s interest in Math appear higher than
it actually is. Figure 5 shows men and women’s CS degrees as a
percentage of all men and women graduates and makes clear that,
despite increased interest in the field by both groups, men’s pursuit
of CS degrees has increased far more rapidly than has women’s.

As another example of the importance of cohort analysis, we
examine CS degrees earned byHispanic and Black students. Figure 6

Figure 5: Women’s CS and Men’s CS as percentage of each
cohort’s total degrees.

shows the standard analysis with Hispanic CS degrees and Black
CS degrees as a percentage of total CS degrees. One might conclude
from this figure that there was a sharp increase in participation in
CS on the part of Hispanic students with a concomitant decrease
in participation of Black students. Yet this conclusion is incorrect;
the growth in Hispanic CS degrees is likely also driven by the
overall demographic shift in the country’s college-going population.
Figure 7 provides a more accurate picture of the extent to which
each group is pursuing CS degrees. In this figure we look at Hispanic
CS degrees as a percentage of total Hispanic degrees and Black CS
degrees as a percentage of total Black degrees, showing clearly that
both groups began a steady increase in CS as a percentage of their
cohort degrees as of 2010.

It is critically important that we look at data intersectionally.
Figure 7 shows an increase in CS degrees for Black students but
does not address the question of whether that increase is reflected
in both Black women’s degrees and Black men’s degrees. Figure 8
reports Black CS degrees as percentage of all Black degrees, Black
men’s CS degrees as a percentage of all Black men’s degrees, and
Black women’s CS degrees as a percentage of all Black women’s
degrees. This clearly indicates that, while there is overall increase
in the extent to which Black men are being attracted to and retained
in CS, there is no analogous increase in the participation of Black
women.

These examples show that the standard analysis used to analyze
degree data, namely examining a group’s CS degrees as a percentage
of all CS degrees, is faulty because the relative size of the component
groups changes over time. The standard analysis, therefore, can
falsely indicate a negative trend that does not actually exist and,
conversely, hide progress that is occurring. Cohort analysis (across
gender, race and ethnicity, and intersectional identities) gives an
accurate picture of the extent to which groups are attracted into the
field. Interested readers can carry out intersectional cohort analysis
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Figure 6: Hispanic and Black CS degrees, percentage of all
CS degrees (standard analysis).

Figure 7: Hispanic and Black CS degrees, percentage of popu-
lation cohort.

for U.S. nationwide CIP-11 data or for any college or university via
a webapp available at https://aiice.shinyapps.io/AiiCE/. We next
explore the importance of examining CS degree data in the context
of university degree data.

3 THE IMPORTANCE OF UNIVERSITY
CONTEXT

Computing departments often have no control over who attends
their university, but they can influence who can discover computing,

Figure 8: Black CS degrees, percentage of gender cohort.

feel a sense of belonging, and persist to graduation. Looking at the
data intersectionally in their department in comparison to their
university’s overall data can let them see their “opportunity gap”.

Many departments struggle to gain access to the demographic
data they need to track students by their intersectional identity
as they make their way through the CS degree.4 However, all de-
partments have access to their graduation data via IPEDS [17]. To
understand the importance of reporting intersectional data in the
context of the university’s data we first look at graduation data
for the entire U.S., and then examine the opportunity gap for a
Hispanic Serving Institution (HSI) in California.

Figure 9 shows the 2021 national computing graduation rates for
the intersection of gender and race/ethnicity captured by IPEDS
as the solid bar (black and in the foreground), and the graduation
rates for all degrees as the shaded bar (gray and behind the solid
bar). For each race/ethnicity category tracked by IPEDS, the bar on
the left represents men and the bar on the right represents women.
To understand this data, we focus on a particular intersectional
identity. In 2021, 8% of all computing graduates in the U.S. identified
as Hispanic men, whereas only 2% identified as Hispanic women.
In contrast, 6% of graduates from university (in any field) identified
as Hispanic men and 9% as Hispanic Women. Thus with respect to
who graduated from university in the U.S. in 2021, Hispanic men
are over-represented in computing (8% versus 6%) and Hispanic
women are underrepresented (2% versus 9%).

Computer science departments can understand their opportunity
gap by looking at their own data in comparison to the data across
their university. In Figure 10, we show the 2021 graduation data for
an HSI in California. What is particularly striking is that out of the
2300+ Hispanic women that graduated from this university in 2021,
only 5 of them graduated with a CS degree. Indeed, this problem

4The Center for Inclusive Computing at Northeastern has supported 58 universities fi-
nancially to unlock this centrally held data for all majors and enrollments in computing
classes, illustrating that it is possible for CS departments to obtain this data.

https://aiice.shinyapps.io/AiiCE/
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Figure 9: Intersectional 2021 IPEDS data of CS degrees (black
solid bars) versus all degrees in the U.S. (gray bars).

Figure 10: Intersectional IPEDS data of CS versus all degrees
at an HSI in California.

Institution 1 (HSI) Institution 2
Total CS degrees 112 580
Hispanic %-age of CS degrees 90.2 3.9
Hispanic women %-age of CS
degrees

14.3 1.7

Table 1: Comparison of two universities - standard analysis.

persists across women of all races and ethnicities at this university;
in 2021, 59% of its graduates were women, whereas only 19% of CS
graduates were women.

Comparing diversity in computing across different institutions
is best done in the context of their university demographics. In
Table 1 we use the standard analysis to compare two institutions,
both public universities. Institution 1 is an HSI whereas Institution

Institution 1 (HSI) Institution 2
Hispanic CS as %-age of all
Hispanic degrees

3.2 3.4

Hispanic women’s CS as %-
age of all Hispanic women’s
degrees

0.9 2.7

Hispanic men’s CS as %-age of
all Hispanic men’s degrees

6.4 4.3.

Table 2: Comparison of two universities - cohort analysis.

2 is not dominated by any single race or ethnicity grouping. Unsur-
prising at Institution 1, since they are the majority of the student
body, Hispanic students earn the majority of CS degrees. Similarly,
because the Hispanic student body is very large at Institution 1, we
can see that Hispanic women make up a much larger proportion of
total CS degrees than they do at Institution 2. Yet when we apply a
cohort analysis approach (from Section 2) we generate a picture of
these two institutions that points more clearly to where existing in-
terventions may be effective and what new interventions might be
useful. As we can see in Table 2, the percentage of Hispanic student
degrees that are earned in CS is similar at both institutions (3.2%
versus 3.4%). Yet interesting differences arise when we consider
the intersectionality of gender with ethnicity. We can see that at
Institution 1, 0.9% of all Hispanic women’s degrees are earned in CS
whereas in Institution 2, 2.7% of all Hispanic women’s degrees are
earned in CS. In contrast, Institution 1 does a better job drawing
Hispanic men into CS (6.4% of Hispanic men’s degrees) compared
to Institution 2 (4.3% of Hispanic men’s degrees). This may indicate
that Institution 2 has strong interventions designed to recruit and
retain women in computing, with derivative impact on Hispanic
women students, but does not necessarily have efforts targeting stu-
dents from historically marginalized race and ethnicity groups. By
the same token, it would appear that Institution 1 should consider
developing interventions focused on their women students.

The examples in this section illustrate the utility of looking at
intersectional graduation data of the CS department in the context
of the overall demographics of the university. This provides them
with the opportunity gap they can tackle. For example, a CS depart-
ment that awards 30% of degrees to women is a stunning success in
a technical university where the representation of women across
all degrees is 30% but represents an opportunity gap in a university
that is 57% women.5 In the next section we examine the utility of
summary statistics for measuring diversity using entropy-based
measures/metrics.

4 ENTROPY-BASED DIVERSITY METRICS
There is a large body of literature on the use of entropy-based
metrics for measuring diversity in populations. Perhaps the most
analogous application of these metrics to BPC is the work done on
measuring residential segregation. Massey and Denton, for example,
discuss many metrics used to measure residential segregation [9].
They proposed that residential segregation could be described by

5Clearly the technical university should work on their overall representation of women
across all degrees, but this is often outside of the influence of the CS department.
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five dimensions: evenness, exposure, concentration, centralization,
and clustering. Their analysis has been replicated and widely dis-
cussed [3, 8–10, 19, 20], and serves as a good baseline for measuring
diversity in computing programs.6

One of these dimensions, evenness, has a good parallel with
our analysis of diversity in computing. Recently Kelly lamented
that there was “no composite institution-level measure for ethnic
diversity” [5, p. 41] and proposed to use the Shannon index as a
way to measure ethnic distribution in academic programs. Kelly
goes on to state “What is needed is a single index that does more
than simply count how many ethnicities exist in a dataset, but in-
stead takes account of the relative population size of those different
ethnicities” [5, p. 42].

The Shannon information index [20], or the Entropy index, has
been commonly used for such purpose. This measure is defined as:

𝐻 = −∑𝑘
𝑘=1 𝑝𝑘 ∗ 𝑙𝑛 𝑝𝑘

where 𝑘 is the number of groups in the analysis, 𝑁𝑘 is the number
of students in group 𝑘 , 𝑁 is the total number of students in the
population, and 𝑝𝑘 = 𝑁𝑘/𝑁 (i.e., the percentage of group 𝑘 in
the population). When all 𝑘 groups are equally distributed 𝐻 is
maximized. For our purposes we will use the normalized version,
called the Shannon Equitability Index (see [5]) which is computed
as 𝐸𝐻 = 𝐻/𝑙𝑛(𝑘) and produces values between 0 (no diversity) and
1 (all groups are equally represented). 𝐸𝐻 (often called “Evenness”)
represents the degree to which all groups are equally proportioned
in the population of study. When this value is represented as a
percent (0% .. 100%) it can be interpreted as the percent of a uniform
distribution that a particular distribution represents.

To illustrate the strengths and weaknesses of 𝐸𝐻 for our pur-
poses, we apply this measure to the IPEDS data of the 12 universities
in North Carolina that graduated the largest number of students
with CS degrees in 2020. These institutions are listed in Table 3
and include public and private, urban and rural, Historically Black
Colleges and Universities (HBCUs), as well as different levels in the
Carnegie Classification.7 Figure 11 shows 𝐸𝐻 for the CS program
at Univ-11 for the years 2010-2019. It shows three different calcula-
tions of 𝐸𝐻 : 1) gender (male/female); 2) race/ethnicity (American
Indian or Alaska Native, Asian, Black or African American, His-
panic or Latino, Native Hawaiian or Other Pacific Islander, White,
and two or more races); and 3) intersectionality which includes
all combinations of gender and race. For this institution, you can
see that 𝐸𝐻 calculated for gender has not changed much; rising to
67.2% in 2019 from 65% in 2010. In contrast when we look at race,
we observe that in the same time period 𝐸𝐻 has risen from 36.5%
in 2010 to 67.3% in 2019, which is a significant improvement. This
example shows that 𝐸𝐻 can be used to track diversity in a single
institution over time. The next analysis illustrates the weaknesses
of 𝐸𝐻 as a measure to compare diversity across institutions.

Figure 12 shows a dumbbell graph of 𝐸𝐻 for all institutions
shown in Table 3 for gender (circle), race/ethnicity (triangle) and the
intersection of race and gender (diamond) of the 2020 graduation
data across all degrees for each university as reported in IPEDS.

6See [20] for a discussion of the desirable properties of a diversity index, as originally
stated by Pielou [12] and later expanded by White [20].
7https://carnegieclassifications.acenet.edu.

Univ. Carnegie Classification Additional Info
Univ-1 Master’s - Larger Programs Public, Rural
Univ-2 Baccalaureate - Arts & Sciences Private
Univ-3 Doctorate - Very High Research Private
Univ-4 Doctorate - Research Public
Univ-5 Baccalaureate - Arts & Sciences Private, HBCU
Univ-6 Doctorate - High Research Public, HBCU
Univ-7 Master’s - Larger Programs Public, HBCU
Univ-8 Doctorate - Very High Research Public
Univ-9 Baccalaureate - Arts & Sciences Public
Univ-10 Doctorate - Very High Research Public
Univ-11 Doctorate - Research Public
Univ-12 Doctorate - High Research Public

Table 3: Twelve largest universities awarding CS degrees in
North Carolina

Figure 11: 𝐸𝐻 for gender, race, and intersectionality for 2010-
2019 graduation data for Univ-11 (see Table 3 for designation)

As shown in the figure, nearly all institutions are close to gender
parity with 90.6% as the lowest 𝐸𝐻 value among this group. Indeed
for these universities, the percentage of female graduates in 2020
ranges from 49% to 68% of all students on campus. Note that a
student body which is 50% female and 50% male would yield 100%
for the 𝐸𝐻 metric.

The 𝐸𝐻 metric for race tells a different story. 𝐸𝐻 calculated using
race ranges from 23% to 66% for this set of institutions. It is worth
noting that the three of the institutions with lowest value for the
race 𝐸𝐻 metric are all HBCUs where the representation of African-
American students ranges between 81% and 93%. 𝐸𝐻 measures how
close a population is to an uniform distribution, ignoring the context
of the institution. Indeed, its is expected that HBCUs would have
a low value in the 𝐸𝐻 metric given the mission and composition
of HBCUs. Therefore, we must be careful when when using 𝐸𝐻 to
compare across institutions because it ignores institutional context.

As we saw in Sections 2 and 3, to truly understand participation
of a particular group within a particular computing program we
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Figure 12: 𝐸𝐻 for the graduation data for the institutions
listed in Table 3 examining race (triangle), gender (circle),
and intersectionality (diamond).

must consider the representation of sub-populations in the context
of the larger reference group (i.e., cohort analysis). 𝐸𝐻 as a measure
of evenness ignores the size of the reference group. For that, we
turn to the Jensen-Shannon divergence [7], which measures the
similarity between two probability distributions. It is based on the
Kullback–Leibler divergence [6], with some notable (and useful)
differences, including that it is symmetric and it always has a finite
value. The square root of the Jensen–Shannon divergence is a metric
often referred to as Jensen–Shannon (JS) distance.8

Figure 13 shows the JS distance between the intersectional distri-
bution of CIP 11 degrees awarded and all degrees awarded for each
of the institutions listed in Table 3. A value of zero means that the
two distributions are identical. To understand this metric, we look
at Univ-5, a private HBCU, which has the highest JS distance of the
12 universities. Figure 14 shows the intersectional breakdown for
CIP 11 degrees and all degrees for Univ-5. Although the majority
of degrees awarded (62%) by this institution went to Black women,
the institution awarded zero CIP 11 degrees to Black women. Fur-
thermore, Hispanic men and women are overrepresented in CIP 11
w.r.t. to all degrees awarded on this campus.

In this section we examined the use of two commonly applied
entropy-basedmeasures for evaluating the demographic diversity of
a population. The first, 𝐸𝐻 , is maximized when all sub-populations
are uniformly distributed. The second, the JS distance, measures
how different the population of CS is compared to the reference
population and can be seen as a summary statistic of the data
presented in Figure 9. Both are useful summary statistics to track
over time to see if representation is increasing overall, but are best
used in combination with the other more detailed analysis methods
presented.

8To compare two probability distributions 𝑃 and𝑄 , the Jensen-Shannon divergence,
JSD, is computed as: 𝐽 𝑆𝐷 = 𝐻 (𝑀 ) − 1

2 (𝐻 (𝑃 ) ) + 𝐻 (𝑄 ) ) , where 𝑀 = 1
2 (𝑃 +𝑄 )

and 𝐻 (𝑃 ) is the Shannon Entropy as defined above. For a more detailed explanation
please see https://en.wikipedia.org/wiki/Jensen-Shannon_divergence.

Figure 13: Jensen-Shannon distance between the distribution
of CIP 11 degrees awarded when compared with the distri-
bution of all degrees awarded at 12 institutions in North
Carolina. Lower values indicate smaller distances between
the two distributions.

Figure 14: Intersectional distribution of graduates in CIP 11
(left chart) and of graduates from all degrees (right chart) at
Univ-5.

5 CONCLUSION
In this paper we have pointed out the limitations of looking at
diversity and assessing BPC efforts via the single metric of the per-
centage of each sub-population’s degree attainment as a proportion
of the total degrees in the field.Wemake three recommendations for
quantitative data analysis of BPC efforts. First, we need to examine
cohort-based data to evaluate each group’s interest in computing,
independent of larger demographic shifts in the student population.
Second, the field as a whole needs to adopt the norm of always re-
porting intersectional data, rather than just looking at men/women
and race/ethnicity separately. Third, university demographic con-
text must be considered when evaluating how well a computing
department is doing to broaden participation, thereby also account-
ing for shifts in the overall university population. Cohort-based
analysis, intersectionality, and entropy based measures provide dif-
ferent insights that are necessary to fully understand the challenges
and successes of BPC activities.
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We conclude with one final observation about what data to ana-
lyze. In this paper we analyzed IPEDS graduation data, but there are
additional facets to the challenges faced by students not captured
in this data. These include: differential exposure to computing, re-
cruitment, mentoring, retention, and institutional barriers students
face in discovering and majoring in computing [2]. Graduation data
is not sufficient for monitoring the impact of BPC activities, partic-
ularly on the introductory sequence of courses in the computing
major. Thus we recommend tracking the intersectional demograph-
ics of the drop/fail/withdraw rates of students in the introductory
sequence classes by professor every semester/quarter to uncover op-
portunities for change in the curriculum, the co-curricular elements,
etc. We note that it can be difficult for computing departments to
obtain the often centrally held student demographic data. The Cen-
ter for Inclusive Computing has, to date, successfully helped 58 U.S.
universities provide this intersectional data for their computing
departments. Finally, we would be remiss in not pointing out that,
in addition to quantitative analysis, we must also examine quali-
tative analysis and student survey data to better understand the
experiences of students and the opportunities for our programs to
be more inclusive.
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